Numerical Simulation of Internal Kelvin Waves and Coastal Upwelling Fronts*

نویسندگان

  • DMITRY BELETSKY
  • WILLIAM P. O’CONNOR
  • DAVID J. SCHWAB
  • DAVID E. DIETRICH
چکیده

Two three-dimensional primitive equation numerical ocean models are applied to the problem of internal Kelvin waves and coastal upwelling in the Great Lakes. One is the Princeton Ocean Model (POM) with a terrain-following (sigma) vertical coordinate, and the other is the Dietrich/Center for Air Sea Technology (DIECAST) model with constant z-level coordinates. The sigma coordinate system is particularly convenient for simulating coastal upwelling, while the z-level system might be better for representing abrupt topographic changes. The models are first tested with a stratified idealized circular lake 100 km in diameter and 100 m deep. Two bottom topographies are considered: a flat bottom and a parabolic depth profile. Three rectilinear horizontal grids are used: 5, 2.5, and 1.25 km. The POM was used with 13 vertical levels, while the DIECAST model was tested with both 13 and 29 vertical levels. The models are driven with an impulsive wind stress imitating the passage of a weather system. In the case of the flat-bottom basin, the dynamical response to light wind forcing is a small amplitude internal Kelvin wave. For both models, the speed of the Kelvin wave in the model is somewhat less than the inviscid analytic solution wave speed. In the case of strong wind forcing, the thermocline breaks the surface (full upwelling) and a strong surface thermal front appears. After the wind ceases, the edges of this thermal front propagate cyclonically around the lake, quite similar to an internal Kelvin wave. In the case of parabolic bathymetry, Kelvin wave and thermal front propagation is modified by interaction with a topographic wave and a geostrophic circulation. In both models, higher horizontal resolution gives higher wave and frontal speeds. Horizontal resolution is much more critical in the full upwelling case than in the Kelvin wave case. Vertical resolution is not as critical. The models are also applied to Lake Michigan to determine the response to strong northerly winds causing upwelling along the eastern shore. The results are more complex than for the circular basin, but clearly show the characteristics of cyclonically propagating thermal fronts. The resulting northward warm front propagation along the eastern shore compares favorably with observations of temperature fluctuations at municipal water intakes after a storm, although the model frontal speed was less than the observed speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marine sar analysis and interpretation system - MARSAIS

In a marine coastal ocean monitoring and prediction system, multisensor in-situ and remote sensing observations (of coastal currents, fronts, eddies, upwelling patterns, internal waves, phytoplankton distribution, algae patchiness, oil pollution and high-resolution wind fields ) need integration and combination with fine resolution numerical ocean models. Only via such integrated systems will r...

متن کامل

Observations of nonlinear internal waves at a persistent coastal upwelling front

We collected high resolution observations of nonlinear internal waves (NLIWs) at a persistent upwelling front in the shallow coastal environment ( ~ 20m) of northern Monterey Bay, CA. The coastal upwelling front forms between recently upwelled waters and warmer stratified waters that are trapped in the bay (upwelling shadow). The front propagates up and down the coast in the along shore directi...

متن کامل

Effect of Tropical Waves on the Tropical Tropopause-Transition-Layer Upwelling

An initial-value problem is employed with a GCM to investigate the role of the convectively driven Rossby and Kelvin waves for tropopause-transition-layer (TTL) upwelling in the tropics. The convective heating is mimicked with a prescribed heating field and the Lagrangian upwelling is identified by examining the evolution of passive tracer fields whose initial distribution is identical to the i...

متن کامل

GPU-SPH simulation of Tsunami-like wave interaction with a seawall associated with underwater

Investigation of the waves generated by underwater disturbances gives precious insight into the effect of man-made underwater explosions as well as natural phenomena, such as underwater volcanoes or oceanic meteor impact. On the other hand, prediction of the effects of such waves on the coastal installations and structures is required for preparation worthwhile criteria for coastal engineers to...

متن کامل

Seasonal Variations of Upper Ocean Transport from the Pacific to the Indian Ocean via Indonesian Straits*

Seasonal variations of upper-ocean mass transport between the Pacific and Indian Oceans via the Indonesian Throughflow (ITF) are examined using numerical experiments with a 11⁄2-layer, reduced-gravity model forced with specific climatological winds. The model ITF transport, computed as a sum of through-strait transport, has an annual range of more than 8 Sv (an annual harmonic of amplitude 4.2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997